
* Operating under the procedures of the American National Standards Institute
NCITS Secretariat, Information Technology Industries Council (ITI)

1250 Eye Street NW, Suite 200, Washington, DC 20005-3922
Telephone: 202-737-8888 (Press 1 Twice) Fax: 202-638-4922 or 202-628-2829

Accredited Standards Committee Document: NCITS/L3.2/01-015
NCITS, Information Technology* Date: Jan. 31, 2001
NCITS/L3, Audio/Picture Coding Project: JPEG-2000
NCITS/L3.2, Still Image Coding

Reply to:
Bernie Brower, Chair
Eastman Kodak Company
1447 St. Paul Street
Rochester, New York 14653-7208
(1 716) 253-5293, brower@kodak.com

To: NCITS/L3.2

From: Chris Brislawn, Brendt Wohlberg, and Michelle Pal, Los Alamos National Lab

Title: Contribution to USNB Comments on Annex G and Annex I, JPEG-2000 Part 2 FCD

2

USNB Comments on Annex G:
Transformation of images, extensions

Add the usual boilerplate “Flowcharts and tables are normative only in the sense that they
define....”

G.2, Table G-1.
The parameter beta_s needs to be signed to ensure compatibility with Part 1 (for the 5-3
filter bank).
The parameter sizes should indicate the exact number of bits needed rather than the
minimum number of bytes required.

G.3.1.
Considerably more exposition is needed here.

G.3.2, G.3.3.
These sections contain errors and should be expressed in a form more consistent with
section G.3.1.

G.4.2.
More detail needed.

G.4.3.2.
Hard to follow these expressions; a bit more exposition needed.

G.4.4.1, G.5.3.1.
There is a significant problem (recently discovered) affecting reversible filtering with HS
filter banks that is related to the use of symmetric extension. The VM implements half-
sample symmetric extension for lifting by interleaving many short extensions between
lifting steps, but if one implements symmetric extension for HS filter banks as a
preprocessing step followed by a cascade of lifting steps (as described in Annex G) then
reversibility can fail even though the filter bank is integer-to-integer. This problem
results from using the floor function for rounding rather than using an odd function like
integer-part truncation. Several possible solutions would involve using multiple different
rounding rules on different lifting steps (with concomitant signaling). The solution
recommended by the USNB Coding Subgroup, however, is to fix the interleaved
extension policy already employed in the VM so that it enables reversible coding with
arbitrary integer-to-integer HS filter banks with the proviso that it must remain equivalent
to pre-extension (i.e., equivalent to the extension policies defined in Part 1) for WS filter
banks.

G.7.
Many examples are still missing.

G.8.
Needs changes to explain recommended extension policy and reversible implementation.

3

Comments on JPEG-2000 Part 2, Annex I, FCD

Summary.
This document constitutes feedback to the USNB on the text of Part 2 Annex I as found in document
number WG1N2000. We point out what appear to be a couple of technical mistakes, suggest corrections,
and comment on other problems with the current exposition in Annex I. All figure and equation references
contained herein refer to the cross-referencing found in document WG1N2000. The issues raised are the
following:
1. In general, the exposition too often implicitly assumes that the marker segment syntax defined in

Annex A constitutes a self-contained procedural definition. There is a need for much more explicit
presentation of procedure flow and procedural rules.

2. Inconsistent use of linear algebra in the definition of the linear dependency removal transform.
3. There is a need for a more detailed, explicit definition of MCC component collections and MIC

component collections since these define the input vectors to the dependency removal and
decorrelation transforms.

4. Informative subsections on the forward component transform would be very helpful, both in
general and for the worked example.

1. Procedures vs. marker segments.
The FCD contains numerous statements of the form “The MCC marker segment may generate null output
components as it reorders intermediate components...”, which make it appear that “marker segments” are
also (apparently self-explanatory) procedures. We recommend removing all such language and replacing it
with definitions of procedures (corresponding to blocks in flowcharts) that reference to marker segments
for necessary parameters. This style of exposition would be much more consistent with the presentation in
the rest of the standard.

Also on the topic of semantics, it is preferable to eliminate all references to a “spectral” axis in the data
(except for the worked example); the standard should refer generically to a “component” direction without
making assumptions as to whether it represents a spectral direction, a third spatial dimension, etc.

Component-collection reordering and insertion/deletion operations should be indicated explicitly in the
system block diagram. We present a proposed revision of the high-level block diagrams below. The high-
level block diagrams contain explicit procedures for permuting components, inserting or deleting
components (when appropriate), and grouping components into component collections for input to the
various transforms occuring in the process. These procedures all need definitions spelled out in the text.

4

Inverse
nonlinear

point
transforms

Inverse
spatial

wavelet
transforms

Inverse component transformation

Procedures that use the
MCC marker segment

Procedures that use the
MIC marker segment

Procedures that use the
MCC marker segment :

Inverse
decorrelation
transforms

Define
MCC

component
collections

Inverse
additive
offset

transforms

Permute
spatially

reconstructed
components

Permute
MCC output
components

Procedures in the dotted box are
repeated for each component collection

Procedures that use the
MIC marker segment :

Procedures in the dotted box are
repeated for each component collection

Insert
components

Permute
MIC output

components

Define MIC
component
collections

Inverse
dependency
transforms

Permute
intermediate
components

Inverse
additive
offset

transforms

Forward component transformation

Dependency
removal

transforms

Permute
decorrelation

output
components

Forward
spatial

wavelet
transforms

Define
dependency
component
collections

Define
decorrelation
component
collections

Additive
offset

transforms

Component
decorrelation
transforms

Nonlinear
point

transforms

Permute
input

components

Permute
intermediate
components

Delete
components

Additive
offset

transforms

5

2. Linear Algebra Problem in Equation I.4.
A significant problem with equation I.4 is that the indicated matrix-vector product, RY’, in I.4 does not
mathematically represent the recursive definition of Y’ intended by equation I.3. We feel that it is
extremely dangerous to present normative definitions in what appears to be matrix-vector product form
when in fact this is inconsistent with the intended definition (i.e., equation I.3). A matrix-vector expression
of the form Y = AY is conventionally interpreted as meaning that Y is a fixed point of the linear
transformation, A, which is not the intention in the present context.

It turns out that the intended definition can be presented in matrix-vector product form, but the correct
matrix is not the one given in I.4. As an exercise, let’s derive the correct matrix-vector product action for
the operation defined by I.3. We first reformulate equation I.3 in matrix-vector form. Define an
intermediate vector, Y:

Y = W + o
 = TR + m + o ,

using the quantities defined in I.1--I.2. (In the suggested block diagrams above we combine m & o into a
single offset vector, but we leave them in separate form for now to facilitate comparison with the FCD
text.) Compare the first component of Y with the first equation in I.3 to see that Y’0 = Y0 .

The first recursive definition in I.3 is

Y’1 = r10Y’0 + Y1 ,

where Y1 = W1+o1 as given by the definition of Y above. Thus, Y’0 and Y’1 are the first two entries in the
matrix-vector product R(1)Y, where





















=





































=

MMOM

L

L

L

2

'
1

'
0

2

1

0

10)1(

100

01

001

Y

Y

Y

Y

Y

Y

r
YR

The next recursively defined entry is
Y’2 = r20Y’0 + r21Y’1 + Y2 ,

which is obtained by multiplying R(1)Y by the matrix R(2) as follows:





















=







































=

MMOM

L

L

L

'
2

'
1

'
0

2

'
1

'
0

2120

)1()2(

1

010

001

Y

Y

Y

Y

Y

Y

rr
YRR

Continuing in this fashion, the ith recursively defined entry, Y’i , is obtained as the ith entry of the iterated
matrix-vector product R(i)....R(2)R(1)Y , where R(i) has 1’s on the diagonal, the recursion coefficients for Y’i

on the ith line, and zeros elsewhere. The complete recursion for the inverse dependency transform is
therefore given by

Y’ = R(Q-1)R(Q-2)....R(2)R(1)Y = R’Y .

6

This is the correct matrix-vector product expression for the inverse dependency transform defined by I.3.
Note first that this expression is not recursive in the vector domain; i.e., it has Y as the input vector and Y’
for output. Also, note that the matrix R’ in this expression is not the same as the matrix R that appears in
I.4. Indeed, R’ has the form



















=

OM

L

L

L

1

01

001

' '
21

'
20

'
10

rr

r
R

where the coefficients r’ik are determined by the matrix product R’ = R(Q-1)....R(2)R(1) .

The above procedure is precisely the same as unrolling the inverse prediction loop following the
quantization decoder in a DPCM decoder (though there is no quantization decoder in the present context)
and writing it as a high-dimensional linear transform rather than as a recursive process. This is of
conceptual/theoretical value since it means that this process can be written as a (nonrecursive) linear
system, R’, with vector Y as input and vector Y’ as output. It is less clear, however, whether the
nonrecursive realization of this system is appropriate in a practical implementation, or whether the
nonrecursive (r’ik) coefficients are more convenient to signal in the codestream. Since the decorrelation
transform allows completely arbitrary linear transforms implemented in a nonrecursive fashion (matrix-
vector product or FIR wavelet filter bank), it makes most sense to signal and implement the dependency
removal transform in recursive form. This is most convenient for, e.g., autoregressive pixel modeling and
prediction.

Recommendation. To keep the dependency removal transforms in recursive form, the misleading matrix-
vector product in equation I.4 should be removed, and the recursive coefficients should not be referred to
as “matrix” coefficients since the word “matrix” commonly implies “nonrecursive realization of a linear
transform.” Similarly, it would be preferable not to refer to the additive offset coefficients as “matrix”
coefficients, since an additive offset is not even a linear transformation. A more generic approach that
avoids implying anything about nonrecursiveness or linearity would be to refer to “arrays” of coefficients.
Then the array of coefficients in an MCT marker segment for a decorrelation transform would be identical
to the matrix representation of the transform while the array of coefficients for a dependency or additive
offset transform would contain the recursion (resp., offset) coefficients.

Equation I.3, which defines dependency transforms, can be simplified by introducing another intermediate
variable such as Y = W + o , as shown above. With this definition of Y, equation I.4 should be replaced by
block diagrams for both forward and inverse dependency transforms, as shown below.

7

P(r0,r1,r2,...)

+

+

-

+

Forward dependency removal transform

YnY'n Q Q-1

P(r0,r1,r2,...)

+

+

Inverse dependency transform

Y'nYn

